Die vorliegende Arbeit stellt eine Prüfungsvorbereitung für reelle Analysis in mehreren Variablen für Lehramtskandidaten dar.
Behandelt werden sowohl Funktionenfolgen sowie Differentialrechnung.
Aus dem Inhalt:
Funktionenfolge
Sei M eine Menge von Funktionen, die alle auf A ⊆ C definiert sind und Werte in R [C] annehmen. Eine Folge in M
heißt Funktionenfolge auf A. Wir schreiben für die Folge meist (fn)n∈N, (fn)n oder (fn)
Punktweise Konvergenz
Eine Funktionenfolge (fn)n auf A konvergiert punktweise gegen eine Funktion f : A → R [C], falls
∀x ∈ A ∀ε > 0 ∃N(ε, x) ∀n ≥ N : |fn(x) − f(x)| < ε
Ende der Leseprobe aus 46 Seiten
- nach oben
- Arbeit zitieren
- Birgit Bergmann (Autor:in), 2013, Reelle Analysis in mehreren Variablen und komplexe Analysis in einer Variable, München, GRIN Verlag, https://www.grin.com/document/302083
Blick ins Buch
-
Laden Sie Ihre eigenen Arbeiten hoch! Geld verdienen und iPhone X gewinnen. -
Laden Sie Ihre eigenen Arbeiten hoch! Geld verdienen und iPhone X gewinnen. -
Laden Sie Ihre eigenen Arbeiten hoch! Geld verdienen und iPhone X gewinnen. -
Laden Sie Ihre eigenen Arbeiten hoch! Geld verdienen und iPhone X gewinnen. -
Laden Sie Ihre eigenen Arbeiten hoch! Geld verdienen und iPhone X gewinnen. -
Laden Sie Ihre eigenen Arbeiten hoch! Geld verdienen und iPhone X gewinnen. -
Laden Sie Ihre eigenen Arbeiten hoch! Geld verdienen und iPhone X gewinnen. -
Laden Sie Ihre eigenen Arbeiten hoch! Geld verdienen und iPhone X gewinnen. -
Laden Sie Ihre eigenen Arbeiten hoch! Geld verdienen und iPhone X gewinnen. -
Laden Sie Ihre eigenen Arbeiten hoch! Geld verdienen und iPhone X gewinnen.