Grin logo
en de es fr
Boutique
GRIN Website
Publier des textes, profitez du service complet
Aller à la page d’accueil de la boutique › Mathématiques - Divers

Eigenvalues and Dichotomy Condition of Difference Operators

Fourth Order Difference equation with Unbounded Coefficients on a Hilbert Space

Titre: Eigenvalues and Dichotomy Condition of Difference Operators

Texte Universitaire , 2018 , 6 Pages , Note: A

Autor:in: Evans Mogoi (Auteur)

Mathématiques - Divers
Extrait & Résumé des informations   Lire l'ebook
Résumé Extrait Résumé des informations

Sturm-Lioville equations and their discrete counterparts, Jacobi matrices are analyzed using similar and related methods. However much is needed to be done in terms of spectral theory in the discrete setting.The objective of the study is to compute the deficiency indices, approximate the eigenvalues and establish the dichotomy condition of a Fourth Order Difference equation with Unbounded Coefficients on a Hilbert Space.

Extrait


Inhaltsverzeichnis (Table of Contents)

  • INTRODUCTION
  • DICHOTOMY CONDITION
    • Theorem 1
    • Remark 1
    • Theorem 2
  • DIAGONALISATION

Zielsetzung und Themenschwerpunkte (Objectives and Key Themes)

This study aims to approximate the eigenvalues and establish the dichotomy condition for a Fourth Order Difference equation with Unbounded Coefficients on a Hilbert Space. The research examines the spectral theory of difference equations, focusing on the relationship between the eigenvalues and the dichotomy condition.

  • Spectral theory of difference equations
  • Eigenvalues and their approximation
  • Dichotomy condition for difference operators
  • Fourth Order Difference equation with Unbounded Coefficients
  • Hilbert Space analysis

Zusammenfassung der Kapitel (Chapter Summaries)

  • INTRODUCTION: This section introduces the research problem and its relevance, highlighting the importance of studying the spectral theory of difference equations in the discrete setting. It outlines the specific fourth-order difference equation under investigation and the conditions imposed on its coefficients.
  • DICHOTOMY CONDITION: This section focuses on establishing the dichotomy condition for the eigenvalues of the difference operator. It presents the main theorems and results that provide a theoretical framework for understanding the relationship between eigenvalues and the dichotomy condition. It introduces the concept of asymptotically constant difference equations and their relevance to the dichotomy condition.
  • DIAGONALISATION: This section explores the diagonalization of the system of difference equations. It explains the process of converting the first-order system into its Levinson-Benzaid-Lutz form by computing the eigenvectors corresponding to the eigenvalues. The section emphasizes the importance of second diagonalization for achieving the Levinson-Benzaid-Lutz form and highlights the conditions required for its implementation.

Schlüsselwörter (Keywords)

Key terms and concepts explored in this work include difference operators, Jacobi matrices, Sturm-Liouville operators, eigenvalues, dichotomy condition, fourth-order difference equations, unbounded coefficients, Hilbert space, spectral analysis, regularity condition, deficiency indices, maximal operator, minimal operator, fundamental matrix, Hamiltonian restriction, self-adjoint boundary conditions, limit point case, Levinson-Benzaid-Lutz form, quasi-differences, diagonalisation, perturbing matrix.

Frequently Asked Questions

What are fourth-order difference equations?

They are discrete mathematical models used to describe systems where the next state depends on the previous four states, often used in physics and engineering.

What is the dichotomy condition in spectral theory?

The dichotomy condition refers to the separation of solutions of a difference equation into those that decay and those that grow as the index tends to infinity.

What are unbounded coefficients in this context?

Unbounded coefficients are terms in the difference equation that do not stay within a fixed range but can grow indefinitely, complicating the analysis of eigenvalues.

How are eigenvalues approximated for these operators?

The study uses Hilbert Space analysis and diagonalization techniques, such as the Levinson-Benzaid-Lutz form, to estimate the spectral properties.

What is the relevance of Jacobi matrices?

Jacobi matrices are the discrete counterparts to Sturm-Liouville equations; they provide a matrix representation of second-order difference operators.

Fin de l'extrait de 6 pages  - haut de page

Résumé des informations

Titre
Eigenvalues and Dichotomy Condition of Difference Operators
Sous-titre
Fourth Order Difference equation with Unbounded Coefficients on a Hilbert Space
Cours
PURE MATHEMATICS
Note
A
Auteur
Evans Mogoi (Auteur)
Année de publication
2018
Pages
6
N° de catalogue
V496901
ISBN (ebook)
9783346017451
Langue
anglais
mots-clé
DEFFERENCE OPERATORS DICHOTOMY CONDITION FOURTH ORDER DIFFERENCE OPERATORS
Sécurité des produits
GRIN Publishing GmbH
Citation du texte
Evans Mogoi (Auteur), 2018, Eigenvalues and Dichotomy Condition of Difference Operators, Munich, GRIN Verlag, https://www.grin.com/document/496901
Lire l'ebook
  • Si vous voyez ce message, l'image n'a pas pu être chargée et affichée.
  • Si vous voyez ce message, l'image n'a pas pu être chargée et affichée.
  • Si vous voyez ce message, l'image n'a pas pu être chargée et affichée.
  • Si vous voyez ce message, l'image n'a pas pu être chargée et affichée.
  • Si vous voyez ce message, l'image n'a pas pu être chargée et affichée.
Extrait de  6  pages
Grin logo
  • Grin.com
  • Expédition
  • Mentions légales
  • Prot. des données
  • CGV
  • Imprint