Grin logo
en de es fr
Shop
GRIN Website
Texte veröffentlichen, Rundum-Service genießen
Zur Shop-Startseite › Didaktik - Mathematik

Zahlentheorie und Strings. Mathematik in Tabellenkalkulationssystemen

Titel: Zahlentheorie und Strings. Mathematik in Tabellenkalkulationssystemen

Seminararbeit , 2013 , 22 Seiten , Note: 15,0

Autor:in: Christian Falk (Autor:in)

Didaktik - Mathematik
Leseprobe & Details   Blick ins Buch
Zusammenfassung Leseprobe Details

In dieser gymnasialen Seminararbeit werden exemplarisch einige grundlegende Begriffe der Zahlentheorie und der Stringverarbeitung in Tabellenkalkulationssystemen am Beispiel von "OpenOffice Calc" erläutert und mathematisch hinterfragt.

Leseprobe


Inhaltsverzeichnis

1. Einführung in verschiedene Stellenwertsysteme
1.1 Entstehung und Verwendung Verschiedener zahlensysteme
1.2 Allgemeine Darstellung einer Zahl im Zahlensystem
1.3 Umrechnung zwischen verschiedenen Stellenwertsystemen

2. Größter Gemeinsamer Teiler und kleinstes gemeinsames Vielfaches
2.1 GrößtergemeinsamerTeilerzweier Zahlen
2.1.1 Definition und Bestimmung durch Primfaktorzerlegung
2.1.2 Der Euklidische Algorithmus
2.1.3 Anwendung: Vollständiges Kürzen von Brüchen
2.2 Kleinstes gemeinsames Vielfaches zweier Zahlen
2.2.1 Definition und Bestimmung durch Primfaktorzerlegung
2.2.2 Anwendung: Hauptnenner zweierBrüche
2.3 Mathematischer Zusammenhang zwischen ggT und kgV

3. Folgen und Reihen
3.1 Definition und Eigenschaften von Folgen und Reihen
3.2 Geometrische Reihen

4. Strings in Tabellenkalkulationsprogrammen
4.1 Definition und Darstellung von Strings
4.2 Einführung in eine Auswahl nützlicher Textfunktionen
4.3 Anwendung: Trennen von zwei Textteilen in einerZelle

5. Umrechnung der Darstellungsformen komplexerZahlen
5.1 Die algebraische Form
5.2 Die Polarform
5.3 Umrechnung zwischen den Darstellungen

Quellenverzeichnis

Häufig gestellte Fragen

Wie rechnet man zwischen verschiedenen Stellenwertsystemen um?

Die Arbeit erläutert die allgemeine Darstellung von Zahlen und zeigt mathematische Wege auf, wie Werte zwischen Systemen (z. B. Dezimal- zu Binärsystem) konvertiert werden.

Was ist der Euklidische Algorithmus?

Dies ist ein Verfahren zur Bestimmung des größten gemeinsamen Teilers (ggT) zweier Zahlen, das besonders effizient für das Kürzen von Brüchen ist.

Welcher Zusammenhang besteht zwischen ggT und kgV?

Die Arbeit thematisiert den mathematischen Zusammenhang zwischen dem größten gemeinsamen Teiler und dem kleinsten gemeinsamen Vielfachen zweier Zahlen.

Was sind Strings in Programmen wie OpenOffice Calc?

Strings sind Textzeichenfolgen. Die Arbeit erklärt nützliche Textfunktionen, um beispielsweise Textteile in einer Zelle automatisch zu trennen.

Wie werden komplexe Zahlen in Tabellenkalkulationen dargestellt?

Es wird die Umrechnung zwischen der algebraischen Form und der Polarform von komplexen Zahlen innerhalb der Software erläutert.

Ende der Leseprobe aus 22 Seiten  - nach oben

Details

Titel
Zahlentheorie und Strings. Mathematik in Tabellenkalkulationssystemen
Hochschule
Finsterwalder Gymnasium Rosenheim
Note
15,0
Autor
Christian Falk (Autor:in)
Erscheinungsjahr
2013
Seiten
22
Katalognummer
V267884
ISBN (eBook)
9783656590958
ISBN (Buch)
9783656590910
Sprache
Deutsch
Schlagworte
zahlentheorie strings mathematik tabellenkalkulationssystemen
Produktsicherheit
GRIN Publishing GmbH
Arbeit zitieren
Christian Falk (Autor:in), 2013, Zahlentheorie und Strings. Mathematik in Tabellenkalkulationssystemen, München, GRIN Verlag, https://www.grin.com/document/267884
Blick ins Buch
  • Wenn Sie diese Meldung sehen, konnt das Bild nicht geladen und dargestellt werden.
  • Wenn Sie diese Meldung sehen, konnt das Bild nicht geladen und dargestellt werden.
  • Wenn Sie diese Meldung sehen, konnt das Bild nicht geladen und dargestellt werden.
  • Wenn Sie diese Meldung sehen, konnt das Bild nicht geladen und dargestellt werden.
  • Wenn Sie diese Meldung sehen, konnt das Bild nicht geladen und dargestellt werden.
  • Wenn Sie diese Meldung sehen, konnt das Bild nicht geladen und dargestellt werden.
  • Wenn Sie diese Meldung sehen, konnt das Bild nicht geladen und dargestellt werden.
  • Wenn Sie diese Meldung sehen, konnt das Bild nicht geladen und dargestellt werden.
Leseprobe aus  22  Seiten
Grin logo
  • Grin.com
  • Versand
  • Impressum
  • Datenschutz
  • AGB
  • Impressum