Grin logo
en de es fr
Shop
GRIN Website
Publicación mundial de textos académicos
Go to shop › Matemática - Estocástico

Grafische Veranschaulichung der Binomialverteilung: 180 Säulendiagramme zur detaillierten Analyse

Título: Grafische Veranschaulichung der Binomialverteilung: 180 Säulendiagramme zur detaillierten Analyse

Libro Especializado , 2013 , 181 Páginas

Autor:in: Diplom-Mathematiker Wolfgang Göbels (Autor)

Matemática - Estocástico
Extracto de texto & Detalles   Leer eBook
Resumen Extracto de texto Detalles

Diese Grafiksammlung enthält insgesamt 180 Säulendiagramme zur Binomialverteilung. Die Bernoullikettenlänge n umfasst Werte von 1 bis 20. Zu jedem Wert von n gehören Trefferwahrscheinlichkeiten von p = 0,1 bis p = 0,9 mit der Schrittweite 0,1.

Die Grafiken eignen sich in idealer Weise zu vielfältigen und ausführlichen vergleichenden Betrachtungen und Untersuchungen verschiedener Binomialverteilungen.

Einen erfolgreichen Einsatz der Grafiken wünschen Ihnen Autor und Verlag!

Extracto


Wolfgang Göbels
Grafische Veranschaulichung
der Binomialverteilung
180 Säulendiagramme zur detaillierten Analyse
Diese Grafiksammlung enthält insgesamt 180 Säulendiagramme zur Binomialvertei-
lung. Die Bernoullikettenlänge n umfasst Werte von 1 bis 20. Zu jedem Wert von n
gehören Trefferwahrscheinlichkeiten von p = 0,1 bis p = 0,9 mit der Schrittweite 0,1.
Die Grafiken eignen sich in idealer Weise zu vielfältigen und ausführlichen verglei-
chenden Betrachtungen und Untersuchungen verschiedener Binomialverteilungen.
Einen erfolgreichen Einsatz der Grafiken wünschen Ihnen Autor und Verlag!
1

n=
1
p
=
0,1
k =
0
0,900000
1
0,100000
Binomialverteilung
0,000000
0,100000
0,200000
0,300000
0,400000
0,500000
0,600000
0,700000
0,800000
0,900000
1,000000
01
234
5678
9
1
0
1
1
1
2
1
3
1
4
1
5
1
6
1
7
1
8
1
9
2
0
k
P(X=
k)
2

n=
1
p
=
0,2
k =
0
0,800000
1
0,200000
Binomialverteilung
0,000000
0,100000
0,200000
0,300000
0,400000
0,500000
0,600000
0,700000
0,800000
0,900000
01
234
5678
9
1
0
1
1
1
2
1
3
1
4
1
5
1
6
1
7
1
8
1
9
2
0
k
P(X=
k)
3

n=
1
p
=
0,3
k =
0
0,700000
1
0,300000
Binomialverteilung
0,000000
0,100000
0,200000
0,300000
0,400000
0,500000
0,600000
0,700000
0,800000
01
234
5678
9
1
0
1
1
1
2
1
3
1
4
1
5
1
6
1
7
1
8
1
9
2
0
k
P(X=
k)
4

n=
1
p
=
0,4
k =
0
0,600000
1
0,400000
Binomialverteilung
0,000000
0,100000
0,200000
0,300000
0,400000
0,500000
0,600000
0,700000
01
234
5678
9
1
0
1
1
1
2
1
3
1
4
1
5
1
6
1
7
1
8
1
9
2
0
k
P(X=
k)
5

n=
1
p
=
0,5
k =
0
0,500000
1
0,500000
Binomialverteilung
0,000000
0,100000
0,200000
0,300000
0,400000
0,500000
0,600000
01
234
5678
9
1
0
1
1
1
2
1
3
1
4
1
5
1
6
1
7
1
8
1
9
2
0
k
P(X=
k)
6

n=
1
p
=
0,6
k =
0
0,400000
1
0,600000
Binomialverteilung
0,000000
0,100000
0,200000
0,300000
0,400000
0,500000
0,600000
0,700000
01
234
5678
9
1
0
1
1
1
2
1
3
1
4
1
5
1
6
1
7
1
8
1
9
2
0
k
P(X=
k)
7

n=
1
p
=
0,7
k =
0
0,300000
1
0,700000
Binomialverteilung
0,000000
0,100000
0,200000
0,300000
0,400000
0,500000
0,600000
0,700000
0,800000
01
234
5678
9
1
0
1
1
1
2
1
3
1
4
1
5
1
6
1
7
1
8
1
9
2
0
k
P(X=
k)
8

n=
1
p
=
0,8
k =
0
0,200000
1
0,800000
Binomialverteilung
0,000000
0,100000
0,200000
0,300000
0,400000
0,500000
0,600000
0,700000
0,800000
0,900000
01
234
5678
9
1
0
1
1
1
2
1
3
1
4
1
5
1
6
1
7
1
8
1
9
2
0
k
P(X=
k)
9

n=
1
p
=
0,9
k =
0
0,100000
1
0,900000
Binomialverteilung
0,000000
0,100000
0,200000
0,300000
0,400000
0,500000
0,600000
0,700000
0,800000
0,900000
1,000000
01
234
5678
9
1
0
1
1
1
2
1
3
1
4
1
5
1
6
1
7
1
8
1
9
2
0
k
P(X=
k)
10

n=
2
p
=
0,1
k =
0
0,810000
1
0,180000
2
0,010000
Binomialverteilung
0,000000
0,100000
0,200000
0,300000
0,400000
0,500000
0,600000
0,700000
0,800000
0,900000
01
234
5678
9
1
0
1
1
1
2
1
3
1
4
1
5
1
6
1
7
1
8
1
9
2
0
k
P(X=
k)
11

n=
2
p
=
0,2
k =
0
0,640000
1
0,320000
2
0,040000
Binomialverteilung
0,000000
0,100000
0,200000
0,300000
0,400000
0,500000
0,600000
0,700000
01
234
5678
9
1
0
1
1
1
2
1
3
1
4
1
5
1
6
1
7
1
8
1
9
2
0
k
P(X=
k)
12

n=
2
p
=
0,3
k =
0
0,490000
1
0,420000
2
0,090000
Binomialverteilung
0,000000
0,100000
0,200000
0,300000
0,400000
0,500000
0,600000
01
234
5678
9
1
0
1
1
1
2
1
3
1
4
1
5
1
6
1
7
1
8
1
9
2
0
k
P(X=
k)
13

n=
2
p
=
0,4
k =
0
0,360000
1
0,480000
2
0,160000
Binomialverteilung
0,000000
0,100000
0,200000
0,300000
0,400000
0,500000
0,600000
01
234
5678
9
1
0
1
1
1
2
1
3
1
4
1
5
1
6
1
7
1
8
1
9
2
0
k
P(X=
k)
14

n=
2
p
=
0,5
k =
0
0,250000
1
0,500000
2
0,250000
Binomialverteilung
0,000000
0,100000
0,200000
0,300000
0,400000
0,500000
0,600000
01
234
5678
9
1
0
1
1
1
2
1
3
1
4
1
5
1
6
1
7
1
8
1
9
2
0
k
P(X=
k)
15

n=
2
p
=
0,6
k =
0
0,160000
1
0,480000
2
0,360000
Binomialverteilung
0,000000
0,100000
0,200000
0,300000
0,400000
0,500000
0,600000
01
234
5678
9
1
0
1
1
1
2
1
3
1
4
1
5
1
6
1
7
1
8
1
9
2
0
k
P(X=
k)
16

n=
2
p
=
0,7
k =
0
0,090000
1
0,420000
2
0,490000
Binomialverteilung
0,000000
0,100000
0,200000
0,300000
0,400000
0,500000
0,600000
01
234
5678
9
1
0
1
1
1
2
1
3
1
4
1
5
1
6
1
7
1
8
1
9
2
0
k
P(X=
k)
17

n=
2
p
=
0,8
k =
0
0,040000
1
0,320000
2
0,640000
Binomialverteilung
0,000000
0,100000
0,200000
0,300000
0,400000
0,500000
0,600000
0,700000
01
234
5678
9
1
0
1
1
1
2
1
3
1
4
1
5
1
6
1
7
1
8
1
9
2
0
k
P(X=
k)
18

n=
2
p
=
0,9
k =
0
0,010000
1
0,180000
2
0,810000
Binomialverteilung
0,000000
0,100000
0,200000
0,300000
0,400000
0,500000
0,600000
0,700000
0,800000
0,900000
01
234
5678
9
1
0
1
1
1
2
1
3
1
4
1
5
1
6
1
7
1
8
1
9
2
0
k
P(X=
k)
19

n=
3
p
=
0,1
k =
0
0,729000
1
0,243000
2
0,027000
3
0,001000
Binomialverteilung
0,000000
0,100000
0,200000
0,300000
0,400000
0,500000
0,600000
0,700000
0,800000
01
234
5678
9
1
0
1
1
1
2
1
3
1
4
1
5
1
6
1
7
1
8
1
9
2
0
k
P(X=
k)
20

n=
3
p
=
0,2
k =
0
0,512000
1
0,384000
2
0,096000
3
0,008000
Binomialverteilung
0,000000
0,100000
0,200000
0,300000
0,400000
0,500000
0,600000
01
234
5678
9
1
0
1
1
1
2
1
3
1
4
1
5
1
6
1
7
1
8
1
9
2
0
k
P(X=
k)
21

n=
3
p
=
0,3
k =
0
0,343000
1
0,441000
2
0,189000
3
0,027000
Binomialverteilung
0,000000
0,050000
0,100000
0,150000
0,200000
0,250000
0,300000
0,350000
0,400000
0,450000
0,500000
01
234
5678
9
1
0
1
1
1
2
1
3
1
4
1
5
1
6
1
7
1
8
1
9
2
0
k
P(X=
k)
22

n=
3
p
=
0,4
k =
0
0,216000
1
0,432000
2
0,288000
3
0,064000
Binomialverteilung
0,000000
0,050000
0,100000
0,150000
0,200000
0,250000
0,300000
0,350000
0,400000
0,450000
0,500000
01
234
5678
9
1
0
1
1
1
2
1
3
1
4
1
5
1
6
1
7
1
8
1
9
2
0
k
P(X=
k)
23

n=
3
p
=
0,5
k =
0
0,125000
1
0,375000
2
0,375000
3
0,125000
Binomialverteilung
0,000000
0,050000
0,100000
0,150000
0,200000
0,250000
0,300000
0,350000
0,400000
01
234
5678
9
1
0
1
1
1
2
1
3
1
4
1
5
1
6
1
7
1
8
1
9
2
0
k
P(X=
k)
24

n=
3
p
=
0,6
k =
0
0,064000
1
0,288000
2
0,432000
3
0,216000
Binomialverteilung
0,000000
0,050000
0,100000
0,150000
0,200000
0,250000
0,300000
0,350000
0,400000
0,450000
0,500000
01
234
5678
9
1
0
1
1
1
2
1
3
1
4
1
5
1
6
1
7
1
8
1
9
2
0
k
P(X=
k)
25

n=
3
p
=
0,7
k =
0
0,027000
1
0,189000
2
0,441000
3
0,343000
Binomialverteilung
0,000000
0,050000
0,100000
0,150000
0,200000
0,250000
0,300000
0,350000
0,400000
0,450000
0,500000
01
234
5678
9
1
0
1
1
1
2
1
3
1
4
1
5
1
6
1
7
1
8
1
9
2
0
k
P(X=
k)
26

n=
3
p
=
0,8
k =
0
0,008000
1
0,096000
2
0,384000
3
0,512000
Binomialverteilung
0,000000
0,100000
0,200000
0,300000
0,400000
0,500000
0,600000
01
234
5678
9
1
0
1
1
1
2
1
3
1
4
1
5
1
6
1
7
1
8
1
9
2
0
k
P(X=
k)
27

n=
3
p
=
0,9
k =
0
0,001000
1
0,027000
2
0,243000
3
0,729000
Binomialverteilung
0,000000
0,100000
0,200000
0,300000
0,400000
0,500000
0,600000
0,700000
0,800000
01
234
5678
9
1
0
1
1
1
2
1
3
1
4
1
5
1
6
1
7
1
8
1
9
2
0
k
P(X=
k)
28

n=
4
p
=
0,1
k =
0
0,656100
1
0,291600
2
0,048600
3
0,003600
4
0,000100
Binomialverteilung
0,000000
0,100000
0,200000
0,300000
0,400000
0,500000
0,600000
0,700000
01
234
5678
9
1
0
1
1
1
2
1
3
1
4
1
5
1
6
1
7
1
8
1
9
2
0
k
P(X=
k)
29

n=
4
p
=
0,2
k =
0
0,409600
1
0,409600
2
0,153600
3
0,025600
4
0,001600
Binomialverteilung
0,000000
0,050000
0,100000
0,150000
0,200000
0,250000
0,300000
0,350000
0,400000
0,450000
01
234
5678
9
1
0
1
1
1
2
1
3
1
4
1
5
1
6
1
7
1
8
1
9
2
0
k
P(X=
k)
30

n=
4
p
=
0,3
k =
0
0,240100
1
0,411600
2
0,264600
3
0,075600
4
0,008100
Binomialverteilung
0,000000
0,050000
0,100000
0,150000
0,200000
0,250000
0,300000
0,350000
0,400000
0,450000
01
234
5678
9
1
0
1
1
1
2
1
3
1
4
1
5
1
6
1
7
1
8
1
9
2
0
k
P(X=
k)
31

n=
4
p
=
0,4
k =
0
0,129600
1
0,345600
2
0,345600
3
0,153600
4
0,025600
Binomialverteilung
0,000000
0,050000
0,100000
0,150000
0,200000
0,250000
0,300000
0,350000
0,400000
01
234
5678
9
1
0
1
1
1
2
1
3
1
4
1
5
1
6
1
7
1
8
1
9
2
0
k
P(X=
k)
32

n=
4
p
=
0,5
k =
0
0,062500
1
0,250000
2
0,375000
3
0,250000
4
0,062500
Binomialverteilung
0,000000
0,050000
0,100000
0,150000
0,200000
0,250000
0,300000
0,350000
0,400000
01
234
5678
9
1
0
1
1
1
2
1
3
1
4
1
5
1
6
1
7
1
8
1
9
2
0
k
P(X=
k)
33

n=
4
p
=
0,6
k =
0
0,025600
1
0,153600
2
0,345600
3
0,345600
4
0,129600
Binomialverteilung
0,000000
0,050000
0,100000
0,150000
0,200000
0,250000
0,300000
0,350000
0,400000
01
234
5678
9
1
0
1
1
1
2
1
3
1
4
1
5
1
6
1
7
1
8
1
9
2
0
k
P(X=
k)
34

n=
4
p
=
0,7
k =
0
0,008100
1
0,075600
2
0,264600
3
0,411600
4
0,240100
Binomialverteilung
0,000000
0,050000
0,100000
0,150000
0,200000
0,250000
0,300000
0,350000
0,400000
0,450000
01
234
5678
9
1
0
1
1
1
2
1
3
1
4
1
5
1
6
1
7
1
8
1
9
2
0
k
P(X=
k)
35

n=
4
p
=
0,8
k =
0
0,001600
1
0,025600
2
0,153600
3
0,409600
4
0,409600
Binomialverteilung
0,000000
0,050000
0,100000
0,150000
0,200000
0,250000
0,300000
0,350000
0,400000
0,450000
01
234
5678
9
1
0
1
1
1
2
1
3
1
4
1
5
1
6
1
7
1
8
1
9
2
0
k
P(X=
k)
36
Final del extracto de 181 páginas  - subir

Detalles

Título
Grafische Veranschaulichung der Binomialverteilung: 180 Säulendiagramme zur detaillierten Analyse
Autor
Diplom-Mathematiker Wolfgang Göbels (Autor)
Año de publicación
2013
Páginas
181
No. de catálogo
V211878
ISBN (Ebook)
9783656404637
ISBN (Libro)
9783656404675
Idioma
Alemán
Etiqueta
Stochastik Wahrscheinlichkeitsrechnung Binomialverteilung Säulendiagramme Bernoullikette Bernoullikettenlänge
Seguridad del producto
GRIN Publishing Ltd.
Citar trabajo
Diplom-Mathematiker Wolfgang Göbels (Autor), 2013, Grafische Veranschaulichung der Binomialverteilung: 180 Säulendiagramme zur detaillierten Analyse, Múnich, GRIN Verlag, https://www.grin.com/document/211878
Leer eBook
  • Si ve este mensaje, la imagen no pudo ser cargada y visualizada.
  • Si ve este mensaje, la imagen no pudo ser cargada y visualizada.
  • Si ve este mensaje, la imagen no pudo ser cargada y visualizada.
  • Si ve este mensaje, la imagen no pudo ser cargada y visualizada.
  • Si ve este mensaje, la imagen no pudo ser cargada y visualizada.
  • Si ve este mensaje, la imagen no pudo ser cargada y visualizada.
  • Si ve este mensaje, la imagen no pudo ser cargada y visualizada.
  • Si ve este mensaje, la imagen no pudo ser cargada y visualizada.
  • Si ve este mensaje, la imagen no pudo ser cargada y visualizada.
  • Si ve este mensaje, la imagen no pudo ser cargada y visualizada.
  • Si ve este mensaje, la imagen no pudo ser cargada y visualizada.
  • Si ve este mensaje, la imagen no pudo ser cargada y visualizada.
  • Si ve este mensaje, la imagen no pudo ser cargada y visualizada.
  • Si ve este mensaje, la imagen no pudo ser cargada y visualizada.
  • Si ve este mensaje, la imagen no pudo ser cargada y visualizada.
  • Si ve este mensaje, la imagen no pudo ser cargada y visualizada.
  • Si ve este mensaje, la imagen no pudo ser cargada y visualizada.
  • Si ve este mensaje, la imagen no pudo ser cargada y visualizada.
  • Si ve este mensaje, la imagen no pudo ser cargada y visualizada.
  • Si ve este mensaje, la imagen no pudo ser cargada y visualizada.
  • Si ve este mensaje, la imagen no pudo ser cargada y visualizada.
  • Si ve este mensaje, la imagen no pudo ser cargada y visualizada.
  • Si ve este mensaje, la imagen no pudo ser cargada y visualizada.
  • Si ve este mensaje, la imagen no pudo ser cargada y visualizada.
  • Si ve este mensaje, la imagen no pudo ser cargada y visualizada.
  • Si ve este mensaje, la imagen no pudo ser cargada y visualizada.
  • Si ve este mensaje, la imagen no pudo ser cargada y visualizada.
  • Si ve este mensaje, la imagen no pudo ser cargada y visualizada.
  • Si ve este mensaje, la imagen no pudo ser cargada y visualizada.
  • Si ve este mensaje, la imagen no pudo ser cargada y visualizada.
  • Si ve este mensaje, la imagen no pudo ser cargada y visualizada.
  • Si ve este mensaje, la imagen no pudo ser cargada y visualizada.
  • Si ve este mensaje, la imagen no pudo ser cargada y visualizada.
  • Si ve este mensaje, la imagen no pudo ser cargada y visualizada.
  • Si ve este mensaje, la imagen no pudo ser cargada y visualizada.
  • Si ve este mensaje, la imagen no pudo ser cargada y visualizada.
  • Si ve este mensaje, la imagen no pudo ser cargada y visualizada.
  • Si ve este mensaje, la imagen no pudo ser cargada y visualizada.
Extracto de  181  Páginas
Grin logo
  • Grin.com
  • Page::Footer::PaymentAndShipping
  • Contacto
  • Privacidad
  • Aviso legal
  • Imprint