Grin logo
en de es fr
Shop
GRIN Website
Publier des textes, profitez du service complet
Go to shop › Sociologie - Divers

Learning Energy. Promises, Hope and Hype in the Context of Machine Learning

Titre: Learning Energy. Promises, Hope and Hype in the Context of Machine Learning

Texte Universitaire , 2020 , 11 Pages , Note: 1,3

Autor:in: M.A. Stefan Raß (Auteur)

Sociologie - Divers
Extrait & Résumé des informations   Lire l'ebook
Résumé Extrait Résumé des informations

The concept of ‘hype’ is widely used in the business and public sphere and serves as a way to characterize increasing expectations of developments in technological fields. This paper seeks to analyze a ‘hype in the making’ by closing in on a case at the intersection of data science and energy. Following the previous body of literature qualitative as well as quantitative indicators are taken into account in order to assess the promises, hope and hype of the optimization of datacenters through machine learning. The analysis concludes that this techonogy is nearing its peak of expectation but shows favorable signs for activities after disappointment.

Extrait


Inhaltsverzeichnis (Table of Contents)

  • Abstract
  • Hyping Smart Energy
  • The Gartner Hype Cycle
  • Learning Energy
  • Cycle of Hype
  • Conclusion

Zielsetzung und Themenschwerpunkte (Objectives and Key Themes)

This paper examines the rising expectations surrounding machine learning in the realm of energy optimization, analyzing the promises, hopes, and hype surrounding this technology. It aims to assess the current state of this technology, using qualitative and quantitative indicators, and predict its future trajectory within the Gartner Hype Cycle.

  • The concept of "hype" in technology
  • The role of machine learning in energy systems
  • The Gartner Hype Cycle as a framework for understanding technological development
  • The potential impact of machine learning on energy efficiency and sustainability
  • The importance of considering both qualitative and quantitative data in technology analysis

Zusammenfassung der Kapitel (Chapter Summaries)

  • Abstract: Introduces the concept of "hype" in technology and outlines the paper's focus on analyzing machine learning's role in energy optimization.
  • Hyping Smart Energy: Discusses the rise of the information society and the role of artificial intelligence (AI) in shaping our interactions and decisions. Highlights the promises and potential of AI, while acknowledging the need to consider the uncertainties associated with technological development.
  • The Gartner Hype Cycle: Explains the Gartner Hype Cycle as a framework for understanding the life cycle of emerging technologies. Discusses the five phases of the Hype Cycle and the role of media attention in shaping expectations.
  • Learning Energy: Explores the concept of machine learning and its potential applications in energy systems. Explains the workings of neural networks and their ability to learn from data.

Schlüsselwörter (Keywords)

Machine learning, energy optimization, hype cycle, artificial intelligence, data science, technological development, Gartner Hype Cycle, neural networks, smart energy, information society.

Fin de l'extrait de 11 pages  - haut de page

Résumé des informations

Titre
Learning Energy. Promises, Hope and Hype in the Context of Machine Learning
Université
University of Vienna
Note
1,3
Auteur
M.A. Stefan Raß (Auteur)
Année de publication
2020
Pages
11
N° de catalogue
V1001869
ISBN (ebook)
9783346377548
Langue
anglais
mots-clé
Machine Learning Hype Hype-Cycle Gardner Artificial Intelligence Energy Science and Technology Studies STS
Sécurité des produits
GRIN Publishing GmbH
Citation du texte
M.A. Stefan Raß (Auteur), 2020, Learning Energy. Promises, Hope and Hype in the Context of Machine Learning, Munich, GRIN Verlag, https://www.grin.com/document/1001869
Lire l'ebook
  • Si vous voyez ce message, l'image n'a pas pu être chargée et affichée.
  • Si vous voyez ce message, l'image n'a pas pu être chargée et affichée.
  • Si vous voyez ce message, l'image n'a pas pu être chargée et affichée.
  • Si vous voyez ce message, l'image n'a pas pu être chargée et affichée.
  • Si vous voyez ce message, l'image n'a pas pu être chargée et affichée.
  • Si vous voyez ce message, l'image n'a pas pu être chargée et affichée.
Extrait de  11  pages
Grin logo
  • Grin.com
  • Page::Footer::PaymentAndShipping
  • Contact
  • Prot. des données
  • CGV
  • Imprint